Big Data: как применять и анализировать большие данные?

Big Data: как применять и анализировать большие данные?

Сегодня, одним из самых популярных и инновационных направлений в IT является применение Big Data. Именно огромные массивы информации, которые, как правило, неупорядочены, и технологии по работе с ними - это термины, которые обозначают этот тренд. Открытие новых возможностей для бизнеса - главное преимущество использования Big Data. Такие компании могут предоставлять своим клиентам персонифицированные продукты и сервисы. В этом материале мы расскажем об основных технологиях анализа больших массивов данных и о том, какие пользы они могут принести.

Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.

Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.

Анализ методов хранения данных

Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.

При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.

Ключевой этап работы с большими данными - анализ. Это именно тот этап, благодаря которому Big Data начинает приносить реальную пользу в бизнесе. Он позволяет отфильтровать не нужную информацию и выделить все самое ценное.

Существует множество методов анализа больших данных, описать их все в рамках одной статьи невозможно, поэтому мы рассмотрим основные из них.

Для анализа больших объемов данных необходима предварительная обработка данных. Этот метод заключается в приведении разнородных данных к общему виду, дополнении недостающей информации и отсеивании лишних. Такой этап работы с данными называется подготовительным и предшествует самому анализу.

Data Mining, что в переводе означает «добыча данных», в сущности так и является: при помощи данного метода из набора информации извлекаются ценные закономерности. В области Data Mining происходит решение разных видов задач, таких как классификация, кластеризация (группировка объектов в зависимости от их сходства), анализ отклонений и другие.

Нейронные сети – это особый тип алгоритмов машинного обучения, который напоминает работу человеческого мозга. Они способны анализировать входные данные и выдавать требуемый результат. Применение умных нейросетей достаточно широко: они могут распознавать лица на фотографиях, а также определять недобросовестные транзакции на основе ряда признаков.

В современном мире прогностический анализ используется для предсказания различных событий: от поведения клиентов и увеличения продаж до изменения финансовых показателей компании, курсов валют, доставки товаров и поломок оборудования. Одним из ключевых моментов в прогнозировании будущих событий является использование ретроспективных данных и выделение параметров, которые могут значительно влиять на результат. Таким образом, прогностический анализ становится незаменимым инструментом для различных индустрий, что позволяет им оперативно адаптироваться к изменяющимся условиям и принимать управленческие решения на основе научных данных.

Статистический анализ

Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.

Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.

Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.

Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.

Какие свойства данных можно отнести к понятию Big Data?

Big Data - это громадный объем данных, который является характерным атрибутом технологической эры, что мы наблюдаем сегодня. Однако, объем данных - это не единственная характеристика, которой следует обладать, чтобы быть отнесенным к категории Big Data.

Для того, чтобы данные были считались Big Data, необходимо, чтобы они соответствовали трём главным характеристикам, называемым «трем V»: объёму, скорости и разнообразию. Количество данных должно быть огромным и измеряться не терабайтами, а петабайтами и эксабайтами. Данные также должны поступать из разных источников непрерывно и быстро. Информация, относящаяся к Big Data, может быть представлена разнообразными типами данных, такими как текстовые и графические документы, аудио и видеофайлы, а также логи. Некоторые эксперты добавляют два дополнительных критерия, которыми являются достоверность и ценность.

Также для того, чтобы данные имели значение и могли быть использованы бизнесом, они должны быть точными, практически полезными и иметь жизненную способность. В целом, характеристики Big Data существенно отличаются от привычных нам данных, традиционно обрабатываемых в информационных системах.

Одним из главных вопросов, который возникает при работе с большими данными, является то, какие преимущества они могут принести бизнесу. Анализ больших объемов информации может ускорять и улучшать различные процессы, а также помогать предсказывать тенденции рынка и поведение клиентов.

Одной из первых сфер, которые оценили все преимущества использования больших данных, стали телекоммуникационные компании, представители банковской отрасли и ретейла. Сегодня, однако, технологии компаний по работе с большими данными становятся все более востребованными во многих отраслях, включая безопасность, медицину, сельское хозяйство, промышленность энергетику, науку и государственное управление.

Конкретные примеры практического применения больших данных в разных областях также весьма показательны. В торговле, рекламе и индустрии развлечений большие данные используются, например, для минимизации рисков и улучшения качества товаров и услуг. В промышленности же данные помогают повышать экологическую и энергоэффективность.

Отрасль безопасности также не остается в стороне. Большие данные используются для анализа информации и поиска угроз в различных сферах, например, в банковской системе. Наука и медицина тоже вовлечены в работу с большими данными - они помогают специалистам лучше понимать клинические данные и улучшать научные исследования. В сельском хозяйстве данные используются для оптимизации урожаев и увеличения продуктивности, а в государственном управлении - для улучшения процессов принятия решений и работы органов власти.

Таким образом, использование больших данных может оказать значительное влияние на различные аспекты бизнеса и общественной жизни. Области применения их анализа все время расширяются, открывая новые возможности для увеличения прибыли и повышения удобства для покупателей и пользователей.

Внедрение инноваций в сфере медицины значительно расширяет возможности науки и технологий, в том числе при помощи анализа Big Data. Некоторые технологические компании уже создали интеллектуальные продукты и сервисы, с помощью которых можно решать принципиально новые задачи в медицине. Например, в Америке была разработана платформа «вычислительной биологии» для установления взаимодействия химических веществ с сигнальными рецепторами клеток организма. При использовании инструментов Big Data возможна революция в фармакологии, поскольку с ее помощью можно находить и создавать лекарственные препараты, которые точно попадают в цель и могут эффективно лечить различные заболевания.

Сегодня анализ больших данных используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP уральского региона были представлены данные, демонстрирующие, что использование Big Data в циклических медицинских тестированиях выявляет ошибки с точностью более чем на 20%, по сравнению с неавтоматизированными измерениями.

В Европе технология анализа больших данных внедряется в сферу медицины более широкими возможностями. Здесь проведено исследование, в ходе которого была проанализирована информация на 150 000 пациентов, что позволило выявить связь определенных генетических факторов с риском возникновения рака. Такой анализ выполнен благодаря использованию технологий Big Data.

Активное использование больших данных в маркетинге позволяет анализировать поведение клиентов, используя историю их покупок, поисковых запросов, посещений и лайков в социальных сетях. Такой подход позволяет маркетологам определить предпочтения пользователей и на основе этого предлагать им товары и услуги, которые имеют для них наибольшую ценность. С помощью Big Data можно создавать более адресную и эффективную рекламу.

Amazon был первым сервисом, который запустил систему рекомендаций, основанную на анализе пользовательских запросов. В процессе работы системы учитывались не только история покупок и поведение клиентов, но и разнообразные внешние факторы, такие как сезон или предстоящие праздники. Как результат, система рекомендаций стала отвечать за более чем треть всех продаж на платформе Amazon.

Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.

Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.

Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.

Внедрение новых технологий и интеллектуальных систем сбора и анализа данных позволяет больше не ограничиваться реактивными мерами по устранению простоев и сокращению производительности, а применять проактивный подход, предотвращая возможные поломки и исключая из процесса неэффективные операции.

Так, аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу на основе больших данных, которая автоматизировала работу служб компании и сделала управление предприятием более прозрачным и эффективным. Данные теперь можно оперативно получать по любым текущим процессам, что повышает качество работы предприятия. Новая платформа также упрощает сотрудничество аэропорта с авиакомпаниями, оптимизирует планирование ресурсов, в том числе, при выполнении технического обслуживания и ремонта терминалов.

Ожидается, что применение этой платформы под названием «умный сервис» улучшит техническое состояние оборудования и общую оборачиваемость запасов на 10%, а уровень сервиса поставщиков на 20%. Теперь производственные процессы в «Пулково» стали еще более эффективными и оптимальными. Инновационные технологии и интеллектуальные системы мониторинга позволяют оптимизировать производственные процессы и решать задачи с высокой точностью.

Большие данные – это мощный инструмент, который позволяет строить модели, выявлять закономерности и прогнозировать изменения в поведении людей и процессов. Одной из областей, в которых применяется прогнозная аналитика на основе Big Data, является реклама. Она помогает планировать успешные маркетинговые кампании, предугадывая потребительский спрос на товары и услуги и совершенствуя взаимодействие с клиентами.

Прогнозные модели на основе больших данных также нашли применение в различных областях, включая образование. Так, их используют для расчета будущей успеваемости учеников и эффективности программ.

Кроме того, прогнозная аналитика на основе Big Data уже широко применяется в авиации. Например, в компании Airbus рассчитывают, что к 2025 году, благодаря предиктивному обслуживанию, удастся снизить количество отказов самолетов из-за выявленных неисправностей. Компания Lufthansa Technik уже внедрила платформу, которая прогнозирует сроки замены деталей. Операции, проводимые на основе прогнозной аналитики на основе больших данных, помогают совершенствовать различные отрасли, делая их более эффективными и конкурентоспособными.

Консалтинговая компания Accenture провела исследование в 2014 году, в рамках которого руководители тысячи компаний из разных стран мира были опрошены. Больше половины (60%) из опрошенных компаний на тот момент успешно внедрили системы анализа больших данных и были довольны полученными результатами. Участники исследования назвали несколько преимуществ использования Big Data, включая создание новых продуктов и услуг, увеличение и разнообразие источников доходов, повышение уровня удовлетворенности клиентов и улучшение клиентского опыта. Источник - https://www.tadviser.ru/.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *